SnO2 coated carbon cloth with surface modification as Na-ion battery anode
نویسندگان
چکیده
Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, United States Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA 90089, United States Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA 90095, United States King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
منابع مشابه
SnO2-microtube-assembled cloth for fully flexible self-powered photodetector nanosystems.
Integrating an energy conversion or storage device with photodetectors into a self-powered system provides a promising route to future devices aimed at reduced size, low weight and high flexibility. We reported here the fabrication of a fully flexible self-powered photodetector nanosystem by integrating a flexible SnO2-cloth-based ultraviolet photodetector with a flexible SnO2-cloth-based lithi...
متن کاملSnO2 Nanowires on Carbon Nanotube Film as a High Performance Anode Material for Flexible Li-ion Batteries
Today, Li-ion batteries (LIBs) are the most common rechargeable batteries used in electronic devices. SnO2 with theoretical specific capacity of 782 mAh/g is among the best anode materials for LIBs. In this report, Three-dimensional SnO2 nanowires (NWs) on carbon nanotube (CNT) thin film (SnO2 / CNT) is fabricated using a combination of vacuum filtration and thermal evaporation techniques. The ...
متن کاملCarbon-Coated SnO2 Nanorod Array for Lithium-Ion Battery Anode Material
Carbon-coated SnO(2) nanorod array directly grown on the substrate has been prepared by a two-step hydrothermal method for anode material of lithium-ion batteries (LIBs). The structural, morphological and electrochemical properties were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical measurement. Wh...
متن کاملHighly stable and reversible lithium storage in SnO2 nanowires surface coated with a uniform hollow shell by atomic layer deposition.
SnO2 nanowires directly grown on flexible substrates can be a good electrode for a lithium ion battery. However, Sn-based (metal Sn or SnO2) anode materials always suffer from poor stability due to a large volume expansion during cycling. In this work, we utilize atomic layer deposition (ALD) to surface engineer SnO2 nanowires, resulting in a new type of hollowed SnO2-in-TiO2 wire-in-tube nanos...
متن کاملA high performance carrier for SnO2 nanoparticles used in lithium ion battery.
Ferrocene-encapsulated single-walled carbon nanotubes (Fc@SWNTs) are developed as carriers for attaching SnO(2). When Fc@SWNTs coated with SnO(2) nanoparticles were used as anode material in lithium ion batteries, the reversible capacity remained over 900 mA h g(-1) after 40 cycles, much higher than other carbon nanomaterials.
متن کامل